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Introduction

This class will meet weekly for 16 weeks. In odd-numbered weeks I will introduce a
substantive topic in quantitative research methods in a 2-hour session. In
even-numbered weeks, I will run “labs”, where the focus will be on putting the
theory into practice using R. These sessions will be 1 hour.

You can find the handouts (including the R code used to generate them) on my
personal Weblearn site: https://weblearn.ox.ac.uk/x/MbYn1T. Datasets that are
used in demonstrations and in the labs are also here. These should be available to
anyone with an Oxford single sign on username and password, but let me know if
you have any problems.

The class will be assessed by means of an assignment, but that won’t be due in until
after the end of Trinity Term. You will be required to carry out an analysis of a
dataset of your choice using any of the methods that we have covered in the course.
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Overview of weeks 1-4

Review of multiple regression
Modelling

Dummy variables
Interactions

Regression diagnostics
Normality of residuals
Collinearity
Model selection
Outliers
Heteroskedasticity
Linearity

Sample selection bias
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Regression model

yi = β0 + β1x1i + β2x2i + · · · + βkxki + εi ,

for i = 1, . . . , n sampled observations. εi ∼ NID(0, σ2).

Fitted model

ŷi = b0 + b1x1i + b2x2i + · · · + bkxki ;

yi = ŷi + ei ,

where bj are estimates of the corresponding βj , and the ei are residuals.

Ordinary Least Squares (OLS) estimates of bj are those that minimize

n∑
i=1

(yi − ŷi)2 =
n∑

i=1
e2i
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Modelling
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Dummy Variables
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What are dummy variables?

Often we want to use explanatory variables in regressions that are categorical. To
do this, we have to use dummy variables. Which category a particular observation
falls in to is identified by a series of binary (0/1) variables, one fewer variables than
there are categories. That’s because there is always one category that does not give
us any additional information: if someone isn’t a man, they must be a woman and
hence we only need a variable identifying whether someone is a man (dummy
variable = 1) or isn’t a man (dummy variable = 0). How, though, do we interpret
the parameter estimates associated with dummy variables?
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Simulated data

In this example, we have a categorical variable with 4 categories and a continuous
variable that are related to a dependent variable in the following way.

y = −.7x1 − .2x2 + .3x3 + .9x4 + .4xc + ε(0, 2)

We first perform a regression of y on the continuous variable, xc , only.
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Regression with continuous variable only

Call:
lm(formula = y ~ xc, data = dta)

Residuals:
Min 1Q Median 3Q Max

-6.15 -1.47 0.01 1.37 6.66

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1095 0.0648 1.69 0.092
xc 0.3753 0.0126 29.73 <2e-16

Residual standard error: 2.05 on 998 degrees of freedom
Multiple R-squared: 0.47, Adjusted R-squared: 0.469
F-statistic: 884 on 1 and 998 DF, p-value: <2e-16
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First category excluded

Call:
lm(formula = y ~ xfac + xc, data = dta)

Residuals:
Min 1Q Median 3Q Max

-5.270 -1.399 0.013 1.361 6.473

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8110 0.1233 -6.58 7.7e-11
xfacB 0.6967 0.1743 4.00 6.9e-05
xfacC 1.2551 0.1743 7.20 1.2e-12
xfacD 1.7307 0.1748 9.90 < 2e-16
xc 0.3852 0.0121 31.94 < 2e-16

Residual standard error: 1.95 on 995 degrees of freedom
Multiple R-squared: 0.522, Adjusted R-squared: 0.52
F-statistic: 272 on 4 and 995 DF, p-value: <2e-16
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Last category excluded

Call:
lm(formula = y ~ xfac + xc, data = dta)

Residuals:
Min 1Q Median 3Q Max

-5.270 -1.399 0.013 1.361 6.473

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9198 0.1236 7.44 2.2e-13
xfacA -1.7307 0.1748 -9.90 < 2e-16
xfacB -1.0340 0.1750 -5.91 4.7e-09
xfacC -0.4756 0.1745 -2.73 0.0065
xc 0.3852 0.0121 31.94 < 2e-16

Residual standard error: 1.95 on 995 degrees of freedom
Multiple R-squared: 0.522, Adjusted R-squared: 0.52
F-statistic: 272 on 4 and 995 DF, p-value: <2e-16

David Barron Further topics in linear regression Hilary Term 2018 12 / 45



What is the relationship between the two?

Category A excluded D excluded
A −0.81 0.92 − 1.73 = −0.81
B −0.81 + 0.70 = −0.11 0.92 − 1.03 = −0.11
C −0.81 + 1.26 = 0.44 0.92 − 0.48 = 0.44
D −0.81 + 1.73 = .92 0.92

Parameter estimates give how much that category differs from the excluded
category.
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Interpreting t-values

Because parameter estimates depend on the arbitrary choice of excluded category,
you can’t interpret the t−values associated with each estimate in the usual way. To
determine whether a dummy variable is statistically signficant, it is conventional to
use an F− test, using the formula:

(RSSr − RSSc)/p
RSSc/(n − k − p − 1) ,

where RSSr is the residual sum of squares (RSS) from the regression without
dummy variables, RSSc is the SSR from the complete model, p is the number of
extra parameters in the complete model, n is the sample size, k is the number of
variable in the restricted model (not counting the constant).
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Example

We can get the numbers we want by using the anova function in R.

anova(cont, xf1)

Res.Df RSS Df Sum of Sq F Pr(>F)
998 4192 NA NA NA NA
995 3778 3 414 36.3 0

You can simply read off the test from this, but you might want to check the
formula above using the RSS numbers.
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Duncan’s occupational prestige data

This example uses data on occupational prestige. The outcome variable is the
percentage of survey respondents who rated an occupation’s prestige excellent or
good. The explanatory variables are income, which is the percentage of males in
the occupation earning $3500 or more in 1950; education, the percentage of males
in the occupation in 1950 who were high school graduates; and type, which is a
factor distinguishing occupations that are professions, white collar or blue collar.
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Regression output

Call:
lm(formula = prestige ~ income + education + type, data = Duncan)

Residuals:
Min 1Q Median 3Q Max

-14.89 -5.74 -1.75 5.44 28.97

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1850 3.7138 -0.05 0.9605
income 0.5975 0.0894 6.69 5.1e-08
education 0.3453 0.1136 3.04 0.0042
typeprof 16.6575 6.9930 2.38 0.0221
typewc -14.6611 6.1088 -2.40 0.0211

Residual standard error: 9.74 on 40 degrees of freedom
Multiple R-squared: 0.913, Adjusted R-squared: 0.904
F-statistic: 105 on 4 and 40 DF, p-value: <2e-16
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Effect plot
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Interpretation

You can see that dummy variables have the effect of shifting estimated regression
lines up or down. The lines are parallel to each other. Here we can see that
occupational prestige increases with education and that at all levels of education,
estimated prestige is lowest for white collar jobs and highest for professional
occupations.
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Interactions
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Motivation

The standard linear regression model implies that the size of the effect of any given
explanatory variable on the outcome variable is the same at all values of the other
explanatory variables. What do we do if we think that is not true? For example, the
effect of marital status and number of children on wages may be different for men
and women. The standard way of incorporating such interactions is to multiply two
variables together:

Yi = β0 + β1X1i + β2X2i + β3X1iX2i + εi
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Example: Labour Force Survey data

Data from the UK Labour Force Survey gives information about wages as well as
age, gender, marital status and number of children. Wages are tranformed to an
hourly basis, and then logged because otherwise they would be very skewed.
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Results without interactions

Call:
lm(formula = Loghourpay ~ sex + age + allchildren + married,

data = lfs)

Residuals:
Min 1Q Median 3Q Max

-5.111 -0.377 -0.039 0.362 3.012

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.625512 0.011926 136.30 <2e-16
sexmale 0.252642 0.006236 40.52 <2e-16
age 0.007007 0.000306 22.92 <2e-16
allchildren 0.009708 0.003519 2.76 0.0058
marriedyes 0.113604 0.007628 14.89 <2e-16

Residual standard error: 0.552 on 31405 degrees of freedom
(32149 observations deleted due to missingness)

Multiple R-squared: 0.0932, Adjusted R-squared: 0.0931
F-statistic: 807 on 4 and 31405 DF, p-value: <2e-16

All of these estimates are statistically signficant, although the overall model fit is pitiful!
David Barron Further topics in linear regression Hilary Term 2018 23 / 45



Results with interactions

Call:
lm(formula = Loghourpay ~ sex + age + allchildren + married +

sex:married + sex:allchildren, data = lfs)

Residuals:
Min 1Q Median 3Q Max

-5.070 -0.372 -0.041 0.356 2.964

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.714088 0.012730 134.65 < 2e-16
sexmale 0.099962 0.010108 9.89 < 2e-16
age 0.006595 0.000305 21.64 < 2e-16
allchildren -0.016965 0.004836 -3.51 0.00045
marriedyes 0.019848 0.009579 2.07 0.03827
sexmale:marriedyes 0.206089 0.013061 15.78 < 2e-16
sexmale:allchildren 0.044640 0.006665 6.70 2.2e-11

Residual standard error: 0.549 on 31403 degrees of freedom
(32149 observations deleted due to missingness)

Multiple R-squared: 0.104, Adjusted R-squared: 0.104
F-statistic: 605 on 6 and 31403 DF, p-value: <2e-16
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Interpretation of interactions

There are two additional parameter estimates, representing the interaction of sex
and marital status, and sex and number of children, respectively. We can work out
the effect of being married on log hourly wages for men and women as follows:

Category No interaction With interaction
Unmarried women 1.626 1.714
Married women 1.739 1.734
Unmarried men 1.878 1.814
Married men 1.992 2.04

You can see that in the first column the difference between being married and
unmarried is the same for men and women, but in the second column the
differences are much bigger for men than for women.
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Interpretation of interactions 2

Effect plot
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Regression diagnostics
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Normality of residuals
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Assumption

The standard assumption of linear regression is that the errors are normally
distributed. If they are not, you will still get unbiased estimates of the regression
parameters. However, the estimates will not (necessarily) be as efficient as they
could be (i.e., standard errors will be larger than they need to be). Hypothesis
testing (which relies on us knowing the sampling distribution of estimates) also
depends on normality assumption being met.
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Example
As an example, look at the Labour Force Survey data again but do the regression
without taking logs of hourly pay.

Call:
lm(formula = hourpay0 ~ sex * married + age + sex * allchildren,

data = lfs)

Residuals:
Min 1Q Median 3Q Max

-13.05 -3.79 -1.64 2.11 192.34

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.88800 0.15596 37.75 < 2e-16
sexmale 1.02923 0.12383 8.31 < 2e-16
marriedyes 0.00190 0.11736 0.02 0.99
age 0.06402 0.00373 17.14 < 2e-16
allchildren -0.05126 0.05924 -0.87 0.39
sexmale:marriedyes 2.34017 0.16001 14.62 < 2e-16
sexmale:allchildren 0.43559 0.08166 5.33 9.7e-08

Residual standard error: 6.73 on 31403 degrees of freedom
(32149 observations deleted due to missingness)

Multiple R-squared: 0.0764, Adjusted R-squared: 0.0763
F-statistic: 433 on 6 and 31403 DF, p-value: <2e-16
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Density plot

A density plot is a kind of “continuous histogram”. You can compare the
distribution of residuals with a normal distribution with the same mean and
standard deviation.
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QQ-plot
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Multi-collinearity
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Definition

(Multi-)collinearity is the problem of two or more explanatory variables not being
independent of each other. Strictly speaking, this is not a violation of the
assumptions of the linear regression model, but when collinearity becomes very high,
estimated standard errors become very high and in some circumstances regression
parameter estimates can be difficult to obtain. One way to measure collinearity
relies on R2

i , the proportion of the variance of the i th explanatory variable that is
associated with the other explanatory variables in the model. That is, if the
regression model is

y = b0 + b1x1 + b2xx + · · · + bkxk + e,

then we regress one explanatory variable on the others:

x1 = c0 + c2x2 + · · · + ckxk + e

and find the R2 of this second regression.
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Variance inflation factor and tolerance

More commonly, two statistics that are derived from R2
i are reported.

Tolerance = (1 − R2
i );

Variance inflation factor = 1/(1 − R2
i ).

The VIF is thus the reciprocal of the tolerance. The VIF (or its square root) is the
most commonly reported statistic because it is the impact on the estimated
variance (or standard error) of parameter estimates that we are usually most
concerned about:

σ2(bi) = σ2ε∑
x2

i
× VIF

A common rule of thumb is that a VIF of 10 or above is a source of concern.
However, treat such rules with caution, as it is possible to make matters worse by
using common “solutions.”
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Example

Calculate the VIF for the Labour Force Survey regression above:

VIF
sex 2.66
age 1.40
allchildren 2.24
married 2.31
sex:married 3.69
sex:allchildren 2.71

You can see that all these VIFs are quite small, so (despite there being two
interaction effects, where collinearity can sometimes be a problem), we don’t have
any concerns about this. What do we do if there is evidence of high collinearity,
though?
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Solutions?

In many cases, there is no straightforward solution; if variables are highly collinear,
that’s just the way the world is and you can’t change it no matter how inconvenient
it may be. For example, it might be difficult to separate the impact of age and
years of experience on wages. It is increasing the risk of failing to reject a null
hypothesis even if it is false, so if estimates are significant anyway, you’re OK. If
you need to reduce the impact of collinearity, there are a few possibilities.

Collect more data. This reduces standard errors, but it may not be practical.
Combine two or more explanatory variables into a single indicator. Only an
option in (rare) cases where this would make theoretical sense.
Remove one or more variables from the regression. This is very risky, and
introduces the broader question of how to select the “best” regression model.
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Misspecification bias

Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-1.9440 -0.6652 -0.0507 0.7705 1.8246

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.725 0.414 8.99 1.3e-09
x1 0.280 0.173 1.62 0.12
x2 -1.080 0.177 -6.11 1.6e-06

Residual standard error: 1.02 on 27 degrees of freedom
Multiple R-squared: 0.746, Adjusted R-squared: 0.727
F-statistic: 39.6 on 2 and 27 DF, p-value: 9.3e-09
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Call:
lm(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max

-2.437 -0.577 0.138 0.677 1.792

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.3458 0.3514 9.52 2.8e-10
x2 -0.8393 0.0986 -8.51 3.0e-09

Residual standard error: 1.05 on 28 degrees of freedom
Multiple R-squared: 0.721, Adjusted R-squared: 0.711
F-statistic: 72.4 on 1 and 28 DF, p-value: 2.99e-09
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Note

This is based on simulated data with b0 = 4, b1 = 0.5 and b2 = −1.3. The two
explanatory variables are strongly correlated. Removing x1 from the analysis
because it is not statistically significant introduces bias in the estimate of b2.
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Things to look out for

Large change in the parameter estimate of b2 across the two regressions.
Large change in the R2 across the two regressions.
Most important is your theory; make decisions based on theory, not by
blindly following some statistical “rule.”
Consider using one of the step-wise regression methods as an aid to model
building.

These are particularly appropriate when you are building models with the
primary purpose of prediction
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Stepwise regression

The basic idea of stepwise regression is to identify a subset of potential explanatory
variables that explain as much variance as possible in the outcome variable as
parsimoniously as possible. There are two possible approaches:

We start with a minimal model and add variables until there is no
improvement in fit;
We start with all possible variables and remove them until there is no
deterioration in fit.

The criterion most commonly used to assess fit is the Akaike information criterion
(AIC), which is smaller the better fitting the model, taking account of the number
of parameters being estimated.
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Example

Data on credit histories of 1,319 applicants for credit cards. The outcome variable
is the number of major negative reports. Age in years; Income in US dollars/10,000;
Share is ratio of monthly credit card expenditure to yearly income; Owner is a
factor, whether a home owner; Dependents is number of dependents; Months at
current address.

Call:
lm(formula = reports ~ age + income + share + owner + dependents +

months, data = CreditCard)

Residuals:
Min 1Q Median 3Q Max

-1.027 -0.575 -0.415 -0.074 13.416

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.474032 0.139941 3.39 0.00073
age 0.004181 0.004345 0.96 0.33617
income 0.006233 0.024055 0.26 0.79557
share -2.158597 0.389605 -5.54 3.6e-08
owneryes -0.238853 0.083708 -2.85 0.00439
dependents 0.024947 0.031925 0.78 0.43469
months 0.000929 0.000617 1.50 0.13270

Residual standard error: 1.33 on 1312 degrees of freedom
Multiple R-squared: 0.033, Adjusted R-squared: 0.0286
F-statistic: 7.47 on 6 and 1312 DF, p-value: 6.88e-08
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Backwards elimination

Call:
lm(formula = reports ~ share + owner + months, data = CreditCard)

Residuals:
Min 1Q Median 3Q Max

-1.049 -0.568 -0.420 -0.088 13.422

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.628971 0.061066 10.30 < 2e-16
share -2.230742 0.386298 -5.77 9.6e-09
owneryes -0.188593 0.075701 -2.49 0.013
months 0.001155 0.000568 2.03 0.042

Residual standard error: 1.33 on 1315 degrees of freedom
Multiple R-squared: 0.0315, Adjusted R-squared: 0.0293
F-statistic: 14.2 on 3 and 1315 DF, p-value: 3.88e-09
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Forwards addition

Call:
lm(formula = reports ~ share + owner + months, data = CreditCard)

Residuals:
Min 1Q Median 3Q Max

-1.049 -0.568 -0.420 -0.088 13.422

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.628971 0.061066 10.30 < 2e-16
share -2.230742 0.386298 -5.77 9.6e-09
owneryes -0.188593 0.075701 -2.49 0.013
months 0.001155 0.000568 2.03 0.042

Residual standard error: 1.33 on 1315 degrees of freedom
Multiple R-squared: 0.0315, Adjusted R-squared: 0.0293
F-statistic: 14.2 on 3 and 1315 DF, p-value: 3.88e-09

In this case, both methods give the same answer, which adds to our confidence.
This isn’t always the case. Care needs to be taken using stepwise methods; there is
no substitute for thinking!
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